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Discretizing nonlinear, non-Gaussian Markov processes with
exact conditional moments
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Approximating stochastic processes by finite-state Markov chains is useful for re-
ducing computational complexity when solving dynamic economic models. We
provide a new method for accurately discretizing general Markov processes by
matching low order moments of the conditional distributions using maximum en-
tropy. In contrast to existing methods, our approach is not limited to linear Gaus-
sian autoregressive processes. We apply our method to numerically solve asset
pricing models with various underlying stochastic processes for the fundamen-
tals, including a rare disasters model. Our method outperforms the solution accu-
racy of existing methods by orders of magnitude, while drastically simplifying the
solution algorithm. The performance of our method is robust to parameters such
as the number of grid points and the persistence of the process.

Keywords. Asset pricing models, duality, Kullback–Leibler information, numeri-
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1. Introduction

Many nonlinear dynamic economic models such as dynamic stochastic general equi-
librium (DSGE) models, asset pricing models, or optimal portfolio problems imply a set
of integral equations that do not admit explicit solutions. Finite-state Markov chain ap-
proximations of stochastic processes are a useful way to reduce computational complex-
ity when solving and estimating such models because integration is replaced by summa-
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tion.1 However, existing methods only work on a limited case by case basis, and apply
mostly to linear Gaussian autoregressive processes.

In this paper, we provide a new method for accurately discretizing general nonlin-
ear, non-Gaussian Markov processes. The dynamics of any Markov process are char-
acterized by its transition kernel, which summarizes the conditional distribution of the
subsequent state for all possible current states. We construct a discrete approximation to
the underlying Markov process by approximating a finite set of its conditional distribu-
tions.2 Given a set of discrete points in the state space, we construct a transition matrix
where each row corresponds to a discrete probability measure that mimics the dynam-
ics of the continuous process in that particular state. This is accomplished by starting
from a coarse approximation of the underlying process and modifying the transition
probabilities so as to exactly match a set of conditional moments, such as the mean and
variance. Because there are typically more grid points than there are conditional mo-
ments of interest, there are infinitely many candidates for the approximate conditional
distribution. To deal with this underdetermined system, we obtain the discrete approx-
imation by minimizing the relative entropy (Kullback–Leibler information) of the con-
ditional distribution from an initial approximation, subject to the given moment con-
straints. Although this primal problem is a high dimensional constrained optimization
problem, its dual is a computationally tractable, low dimensional unconstrained opti-
mization problem. We provide recommendations for how to choose the initial approxi-
mation and the moments to match.

The two ingredients of our method—matching conditional moments to approxi-
mate a Markov process and using the maximum entropy principle to match moments—
have already been proposed separately in the literature. Our main contribution is that
we combine these two ingredients and show that this idea can be used to discretize a
wide variety of nonlinear, non-Gaussian Markov processes for which there is currently
no systematic way to discretize. Furthermore, we provide sufficient conditions for the
existence of a discretization with exact moments and study economic applications to
which existing methods do not apply.

The closest papers to ours are Tanaka and Toda (2013, 2015) and Gospodinov and
Lkhagvasuren (2014). Tanaka and Toda (2013) construct discrete approximations of con-
tinuous probability distributions (as opposed to stochastic processes) by modifying an
initial discretization so as to exactly match low order moments using the maximum en-
tropy principle. While they briefly discuss how to apply their method to discretize vector
autoregressive processes (VARs), because they need a closed-form expression for the er-
godic distribution—which is not available in most situations—their method cannot be

1Examples include heterogeneous-agent incomplete markets models (Aiyagari, 1994, Heaton and Lucas,
1996), optimal taxation (Aiyagari, 1995, Dávila et al., 2012), portfolio problems (Haliassos and Michaelides,
2003, Judd, Kubler, and Schmedders, 2011), asset pricing (Zhang, 2005, Guvenen, 2009), DSGE models
(Aruoba, Fernándes-Villaverde, and Rubio-Ramírez, 2006, Caldara et al., 2012), estimating dynamic games
(Aguirregabiria and Mira, 2007), inflation dynamics and monetary policy (Vavra, 2014), among many oth-
ers.

2For the remainder of the paper, “discrete” should be understood to refer to the state space of the Markov
process. Time is always discrete.
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directly used for discretizing general Markov processes. Tanaka and Toda (2015) prove
that their approximation method weakly converges to the true distribution as the num-
ber of grid points tends to infinity. They also show that the integration error diminishes
by a factor proportional to the error when the integrand is approximated using the func-
tions defining the moments of interest as basis functions. Therefore, the approximation
quality of the Tanaka–Toda method depends on two factors: (i) the quality of the initial
discretization and (ii) how well the moment defining functions approximate the inte-
grand.

Gospodinov and Lkhagvasuren (2014) (henceforth GL) propose a discretization
method of VARs that targets the first and second conditional moments. According
to their numerical results, the GL method seems to be the most accurate finite-state
Markov chain approximation for VARs currently available in the literature. As in GL, we
target the conditional moments so as to discretize VARs. However, our method improves
upon theirs in three important ways.

First, unlike the GL method, our approach is not limited to the approximation of
VARs. It applies to any Markov process for which we can compute conditional mo-
ments and thus has a much wider range of applicability. For instance, we can discretize
stochastic processes with interesting nonlinear and non-Gaussian conditional dynam-
ics. Additionally, we do not require a parametric specification of the Markov process to
use our approach. Given sufficient data, we can estimate the conditional moments and
transition kernel nonparametrically, and use these to construct our discrete approxima-
tion.

Second, GL adjust the transition probabilities to match moments directly, whereas
we solve the dual problem, which is a low dimensional unconstrained convex minimiza-
tion problem. The gradient and Hessian of the objective function can be computed in
closed form, which allows us to use a standard Newton-type algorithm to find the min-
imum. Consequently, our method is computationally tractable even when the number
of grid points is large. This is an important property, particularly for the case of high
dimensional processes.

Finally, for general VARs (which may even feature stochastic volatility), under certain
regularity conditions we prove that our method matches all k-step ahead conditional
mean, variance, and covariance as well as the unconditional ones. This property has
been known only for the Rouwenhorst (1995) method for discretizing univariate AR(1)
(autoregressive) processes. We further discuss the relation of our method to the existing
literature in Section 3.3.

To illustrate the general applicability of our method, we solve for the price–dividend
ratio in Lucas-tree asset pricing models, under different assumptions about the stochas-
tic processes driving consumption and dividend growth, including more standard
AR(1) and VAR(1) processes with Gaussian shocks, an AR(1)model with non-Gaussian
shocks, and the variable rare disasters model of Gabaix (2012), whose underlying
stochastic process is highly nonlinear and non-Gaussian. In each case, we show that our
method produces more accurate solutions than all existing discretization methods,3 of-

3Several papers, such as Aruoba, Fernándes-Villaverde, and Rubio-Ramírez (2006) and Caldara et al.
(2012), compare the accuracy of various solution techniques (log-linearization, value function iteration,
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ten by several orders of magnitude, requiring only minor modifications between spec-
ifications and trivial computing time. We also show that solving general asset pricing
models (e.g., with recursive utility and complicated dynamics) using discretization and
projection (Judd, 1992) is actually equivalent to solving a discrete-state model (which
is a matter of inverting a matrix) and interpolating. Therefore our method provides a
simple but systematic way to solve asset pricing models.

We emphasize that our method has many potential applications beyond the asset
pricing models considered here. For example, our method can be used to facilitate the
estimation of nonlinear state space models. In parallel work, Farmer (2016) shows that
by discretizing the dynamics of the state variables, one can construct an approximate
state space model with closed-form expressions for the likelihood and filtering recur-
sions, as in Hamilton (1989). The parameters of the model can then be estimated us-
ing standard likelihood or Bayesian techniques. This procedure offers an alternative to
computationally expensive, simulation-based methods like the particle filter, and sim-
ple but often inaccurate linearization approaches like the extended Kalman filter. Our
paper provides a computationally tractable method for discretizing general nonlinear
Markov processes governing the state dynamics.

2. Maximum entropy method for discretizing Markov processes

In this section we review the maximum entropy method for discretizing probability dis-
tributions proposed by Tanaka and Toda (2013, 2015) and apply it to discretize general
Markov processes.

2.1 Discretizing probability distributions

2.1.1 Description of method Suppose that we are given a continuous probability den-
sity function f : RK → R, which we want to discretize. Let X be a random vector with
density f and let g : RK → R be any bounded continuous function. The first step is to
pick a quadrature formula

E
[
g(X)

] =
∫
RK
g(x)f (x)dx≈

N∑
n=1

wng(xn)f (xn)� (2.1)

where N is the number of integration points, {xn}Nn=1, and wn > 0 is the weight on the
integration point xn.4 Let DN = {xn|n= 1� � � � �N} be the set of grid points. For example,
if we let

DN = {
(m1h� � � � �mKh)|m1� � � � �mK = 0�±1� � � � �±M}

�

perturbation, projection, etc.), given the discretization method. To the best of our knowledge, Kopecky and
Suen (2010) is the only paper that compares the solution accuracy across various discretization methods,
fixing the solution technique. However, they consider only Gaussian AR(1) processes.

4Since the grid points {xn} and weights {wn} may depend on the number of grid pointsN , a more precise
notation might be xn�N and wn�N . Since there is no risk of confusion, we keep the simpler notation xn and
wn.
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which consists of N = (2M + 1)K lattice points with grid size h, setting the weight wn =
hK in quadrature formula (2.1) gives the trapezoidal formula.

For now, we do not take a stance on the choice of the initial quadrature formula, but
take it as given. Given the quadrature formula (2.1), a coarse but valid discrete approxi-
mation of the density f would be to assign probability qn to the point xn proportional to
wnf(xn), so

qn = wnf(xn)
N∑
n=1

wnf(xn)

� (2.2)

However, this is not necessarily a good approximation because the moments of the dis-
crete distribution {qn} do not generally match those of f .

Tanaka and Toda (2013) propose exactly matching a finite set of moments by updat-
ing the probabilities {qn} in a particular way. Let T : RK → R

L be a function that defines
the moments that we wish to match and let T̄ = ∫

RK
T(x)f (x)dx be the vector of ex-

act moments. For example, if we want to match the first and second moments in the
one-dimensional case (K = 1), then T(x)= (x�x2)′. Tanaka and Toda (2013) update the
probabilities {qn} by solving the optimization problem

minimize{pn}

N∑
n=1

pn log
pn

qn

subject to
N∑
n=1

pnT(xn)= T̄ �
N∑
n=1

pn = 1� pn ≥ 0� (P)

The objective function in the primal problem (P) is the Kullback and Leibler (1951) infor-
mation of {pn} relative to {qn}, which is also known as the relative entropy. This method
matches the given moments exactly while keeping the probabilities {pn} as close to the
initial approximation {qn} as possible in the sense of the Kullback–Leibler information.5

Note that since (P) is a convex minimization problem, the solution (if one exists) is
unique.

The optimization problem (P) is a constrained minimization problem with a large
number (N) of unknowns ({pn}) with L+ 1 equality constraints and N inequality con-
straints, which is in general computationally intensive to solve. However, it is well known
that entropy-like minimization problems are computationally tractable by using duality
theory (Borwein and Lewis, 1991). Tanaka and Toda (2013) convert the primal problem

5The Kullback–Leibler information is not the only possible loss function. One may also use other criteria
such as the L2 norm or other generalized entropies. However, the Kullback–Leibler information has the
unmatched feature that (i) the domain of the dual function is the entire space, so the dual problem becomes
unconstrained, and (ii) the constraint pn ≥ 0 never binds, so the dual problem becomes low dimensional.
See Borwein and Lewis (1991) for more details on duality in entropy-like minimization problems, and see
Owen (2001), Tsao (2004), Kitamura (2007), and Tsao and Wu (2013) for discussions on the computational
aspects of empirical likelihood methods, which are mathematically related.
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(P) to the dual problem

max
λ∈RL

[
λ′T̄ − log

(
N∑
n=1

qneλ
′T(xn)

)]
� (D)

which is a low dimensional (L unknowns) unconstrained concave maximization prob-
lem and hence is computationally tractable. The following theorem shows how the so-
lutions to the two problems (P) and (D) are related. Below, the symbols “int” and “co”
denote the interior and the convex hull of sets.

Theorem 2.1. (i) The primal problem (P) has a solution if and only if T̄ ∈ coT(DN). If
a solution exists, it is unique.

(ii) The dual problem (D) has a solution if and only if T̄ ∈ int coT(DN). If a solution
exists, it is unique.

(iii) If the dual problem (D) has a (unique) solution λN , then the (unique) solution to
the primal problem (P) is given by

pn = qneλ
′
NT(xn)

N∑
n=1

qneλ
′
NT(xn)

= qneλ
′
N(T(xn)−T̄ )

N∑
n=1

qneλ
′
N(T(xn)−T̄ )

� (2.3)

2.1.2 Practical implementation Theorem 2.1 provides a practical way to implement
the Tanaka–Toda method. After choosing the initial discretization Q= {qn} and the mo-
ment defining function T , one can numerically solve the unconstrained optimization
problem (D). To this end, we can instead solve

min
λ∈RL

N∑
n=1

qneλ
′(T(xn)−T̄ ) (D′)

because the objective function in (D′) is a monotonic transformation (−1 times the ex-
ponential) of that in (D). Since (D′) is an unconstrained convex minimization problem
with a (relatively) small number (L) of unknowns (λ), solving it is computationally sim-
ple. Letting JN(λ) be the objective function in (D′), its gradient and Hessian can be ana-
lytically computed as

∇JN(λ)=
N∑
n=1

qneλ
′(T(xn)−T̄ )(T(xn)− T̄ )

� (2.4a)

∇2JN(λ)=
N∑
n=1

qneλ
′(T(xn)−T̄ )(T(xn)− T̄ )(

T(xn)− T̄ )′
� (2.4b)

respectively. In practice, we can quickly solve (D′) numerically using optimization rou-
tines by supplying the analytical gradient and the Hessian.6

6Since the dual problem (D) is a concave maximization problem, one may also solve it directly. However,
according to our experience, solving (D′) is numerically more stable. This is because the objective function
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If a solution to (D′) exists, it is unique, and we can compute the updated discretiza-
tion P = {pn} by (2.3). If a solution does not exist, it means that the regularity condition
T̄ ∈ int coT(DN) does not hold and we cannot match moments. Then one needs to se-
lect a smaller set of moments. Numerically checking whether moments are matched is
straightforward: by (2.3), (D′), and (2.4a), the error is

N∑
n=1

pnT(xn)− T̄ =

N∑
n=1

qneλ
′
N(T(xn)−T̄ )(T(xn)− T̄ )
N∑
n=1

qneλ
′
N(T(xn)−T̄ )

= ∇JN(λN)
JN(λN)

� (2.5)

2.1.3 Error estimate and convergence Tanaka and Toda (2015) prove that whenever the
quadrature approximation (2.1) converges to the true value as the number of grid points
N tends to infinity, the discrete distribution {pn} in (2.3) also weakly converges to the
true distribution f and improves the integration error as follows. Let g be the integrand
in (2.1) and consider approximating g using T = (T1� � � � �TL) as basis functions,

g(x)≈ ĝT (x)=
L∑
l=1

blTl(x)�

where {bl}Ll=1 are coefficients. Let rg�T = g−ĝT
‖g−ĝT ‖∞ be the normalized remainder term,

where ‖·‖∞ denotes the supremum norm. Letting

E
(Q)
g�N =

∣∣∣∣∣
∫
RK
g(x)f (x)dx−

N∑
n=1

qng(xn)

∣∣∣∣∣
be the integration error under the initial discretization Q= {qn} and letting E(P)g�N be the
error under P = {pn}, Tanaka and Toda (2015) prove the error estimate

E
(P)
g�N ≤ ‖g− ĝT ‖∞

(
E
(Q)
rg�T �N

+ 2√
C
E
(Q)
T�N

)
� (2.6)

where C is a constant explicitly given in their paper. Equation (2.6) says that the inte-
gration error improves by the factor ‖g− ĝT ‖∞, which is the approximation error of the
integrand g by the basis functions {Tl}Ll=1 that define the targeted moments. It is clear
from (2.6) that the approximation quality of the Tanaka–Toda method depends on two
factors: (i) the quality of the initial discretization (how small E(Q)g�N is), and (ii) how well
the moment defining functions approximate the integrand (how small ‖g− ĝT ‖∞ is).

2.2 Discretizing general Markov processes

Next we show how to extend the Tanaka–Toda method to the case of time-homogeneous
Markov processes.

in (D) is close to linear when ‖λ‖ is large, so the Hessian is close to singular and not well behaved. On the
other hand, since the objective function in (D′) is the sum of exponential functions, it is well behaved.
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2.2.1 Description of method Consider the time-homogeneous first-order Markov pro-
cess

P
(
xt ≤ x′|xt−1 = x) = F(

x′�x
)
�

where xt is the vector of state variables and F(·�x) is a cumulative distribution func-
tion (CDF) that determines the distribution of xt = x′ given xt−1 = x. The dynamics of
any Markov process are completely characterized by its Markov transition kernel. In the
case of a discrete state space, this transition kernel is simply a matrix of transition prob-
abilities, where each row corresponds to a conditional distribution. We can discretize
the continuous process x by applying the Tanaka-Toda method to each conditional dis-
tribution separately.

More concretely, suppose that we have a set of grid points DN = {xn}Nn=1 and an ini-
tial coarse approximation Q = (qnn′), which is an N ×N probability transition matrix.
Suppose we want to match some conditional moments of x, represented by the mo-
ment defining function T(x). The exact conditional moments when the current state is
xt−1 = xn are

T̄n = E
[
T(xt)|xn

] =
∫
T(x)dF(x�xn)�

where the integral is over x, fixing xn. (If these moments do not have explicit expressions,
we can use highly accurate quadrature formulas to compute them.) By Theorem 2.1, we
can match these moments exactly by solving the optimization problem

minimize
{pnn′ }Nn′=1

N∑
n′=1

pnn′ log
pnn′

qnn′

subject to
N∑
n′=1

pnn′T(xn′)= T̄n�
N∑
n′=1

pnn′ = 1� pnn′ ≥ 0 (Pn)

for each n= 1�2� � � � �N or, equivalently, the dual problem

min
λ∈RL

N∑
n′=1

qnn′eλ
′(T(xn′ )−T̄n)� (D′

n)

Problem (D′
n) has a unique solution if and only if the regularity condition

T̄n ∈ int coT(DN) (2.7)

holds. We summarize our procedure in Algorithm 2.2 below.

Algorithm 2.2 (Discretization of Markov processes).

Step 1. Select a discrete set of points DN = {xn}Nn=1 and an initial approximation
Q= (qnn′).
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Step 2. Select a moment defining function T(x) and corresponding exact condi-
tional moments {T̄n}Nn=1. If necessary, approximate the exact conditional moments
with a highly accurate numerical integral.

Step 3. For each n= 1� � � � �N , solve the minimization problem (D′
n) for λn. Check

whether moments are matched using formula (2.5), and if not, select a smaller set
of moments. Compute the conditional probabilities corresponding to row n of P =
(pnn′) using (2.3).

The resulting discretization of the process is given by the transition probability ma-
trix P = (pnn′). Since the dual problem (D′

n) is an unconstrained convex minimization
problem with a typically small number of variables, standard Newton-type algorithms
can be applied. Furthermore, since the probabilities (2.3) are strictly positive by con-
struction, the transition probability matrix P = (pnn′) is a strictly positive matrix, so the
resulting Markov chain is stationary and ergodic.

2.2.2 The regularity condition How stringent is the regularity condition (2.7)? Note
that coT(DN) is the convex hull of the image of the grid DN under the moment defin-
ing function T , so any element of coT(DN) has the form

∑
n αnT(xn), where αn ≥ 0,∑

n αn = 1, and xn ∈DN . Also, by definition T̄n = E[T(xt)|xt−1 = xn], which is a weighted
average of T(x)’s. Therefore in practice it is not hard to meet the regularity condition
T̄n ∈ int coT(DN). The only case in which difficulty arises is when xn is close to the
boundary of (the convex hull of) DN and the stochastic process is highly persistent.
Then T̄n also tends to be close to the boundary of coT(DN), and it may happen to be
outside the set, violating (2.7). But since the boundary of a convex set has measure zero,
for the vast majority of the grid points we are able to match moments exactly. A practical
solution to the potential failure of the regularity condition is thus to match moments
whenever we can by solving the minimization problem (D′

n), and if a solution fails to
exist (which can be checked by computing the error (2.5)), we can match only a subset
of the moments T = (T1� � � � �TL).

2.2.3 How to choose the grid So as to implement our method in practice, we need to
overcome two issues: (i) the choice of the grid and (ii) the choice of the targeted mo-
ments.

According to the convergence analysis in Tanaka and Toda (2015), the grid DN
should be chosen as the integration points of the quadrature formula (2.1), which is
used to obtain the initial coarse approximation in (2.2). For simplicity we often choose
the trapezoidal formula and therefore evenly spaced grids. Alternatively, we can place
points using the Gaussian quadrature nodes as in Tauchen and Hussey (1991) or, for
that matter, any quadrature formula with positive weights such as Simpson’s rule, low-
degree Newton–Cotes-type formulas, or the Clenshaw–Curtis quadrature (see Davis and
Rabinowitz (1984) for quadrature formulas), or quantiles as in Adda and Cooper (2003).

Although tensor grids work well in low dimensional problems, in higher dimensions
they are not computationally tractable because the number of grid points increases ex-
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ponentially with the dimension.7 In such cases, one needs to use sparse grids (Krueger
and Kubler, 2004, Heiss and Winschel, 2008) or select the grid points to delimit sets that
the process visits with high probability (Maliar and Maliar, 2015).

In practice, we find that the evenly spaced grid (trapezoidal formula) works very well
and is robust across a wide range of different specifications. However, if there is some
special structure to the conditional distribution, such as normality, a Gaussian quadra-
ture approximation can result in better solution accuracy for dynamic models.

2.2.4 How to choose the moments to match Our method approximates a continuous
Markov process by a discrete transition matrix. A good approximation is one for which
the integral of any bounded continuous function using the discrete measure is close to
the integral using the original continuous measure. The quality of this approximation
depends on how accurately the integrand can be approximated by the moment defining
functions (see ‖g− ĝT ‖∞ in (2.6)).

In the case of a single probability distribution, we can choose a grid over a set with
high probability and therefore match as many moments as we wish, up to one fewer
than the number of grid points. In the case of stochastic processes, the situation is more
restrictive. As an illustration, consider the AR(1) process

xt = ρxt−1 + εt� εt ∼N(0�1)�

with ρ close to 1.
Let DN = {x̄1� � � � � x̄N } be the grid, with x̄1 < · · · < x̄N . When xt−1 = x̄N , the condi-

tional distribution of xt isN(ρx̄N�1). But when ρ is close to 1, this (true) distribution has
nearly 1/2 of its probability mass on the interval (x̄N�∞), which lies outside the grid.
Since there is such a discrepancy between the location of the grid points and the prob-
ability mass, we do not have the flexibility to match many moments, because the reg-
ularity condition T̄n ∈ int coT(DN) may fail to hold near the boundary. In the examples
below, we consider matching up to four conditional moments whenever we can.

3. Discretizing VAR(1)s and stochastic volatility models

Applied researchers often specify vector autoregressive processes (VARs) to describe the
underlying shocks in their models. In this section we explain how our method can be
used to discretize general VARs and stochastic volatility models, and we prove some the-
oretical properties.

3.1 VAR(1)

Suppose we want to discretize a VAR(1) process

xt = (I −B)μ+Bxt−1 +ηt� ηt ∼N(0�Ψ)� (3.1)

7Note that with our method, having a large number of grid points is not an issue for solving the dual
problem (D′

n). The number of unknowns is equal to the number of targeted moments, which is fixed. The
issue with tensor grids is that the number of dual problems we need to solve grows exponentially with the
dimension.



Quantitative Economics 8 (2017) Discretizing Markov processes 661

where all vectors are in R
K , μ is the unconditional mean of xt , Ψ is the conditional vari-

ance matrix, and B is a K × K matrix with all eigenvalues smaller than 1 in absolute
value so as to guarantee stationarity. Using the Cholesky decomposition, without loss of
generality, we can rewrite (3.1) as

yt =Ayt−1 + εt� (3.2)

where yt = C−1(xt − μ), A = C−1BC, εt = C−1ηt ∼ N(0�D), C is lower triangular, D is
diagonal (typicallyD= I), andΨ = CDC ′.8 Once we have a discretization for yt , we have
one for xt = μ+Cyt .

3.1.1 Description of method First we introduce some additional notation. Let yt =
(y1t � � � � � yKt) and assume that the discrete approximation of ykt takesNk values denoted
byDk�Nk = {ȳkn}Nkn=1. In total, there are J =N1 ×· · ·×NK states.9 Let j = 1� � � � � J be an in-
dex of the state, corresponding to a particular combination of points (ȳ1n(j)� � � � � ȳKn(j)).
Let pkn(j) be the probability that ykt = ȳkn conditional on being in state j. Define the
conditional mean and variance of ykt given state j as μk(j) and σk(j)2, respectively. We
outline the procedure in Algorithm 3.1. (Although we describe it for the case of two con-
ditional moments, the case with higher order moments is similar.)

Algorithm 3.1 (Discretization of VAR(1) processes).

Step 1. For each component of yt = (y1t � � � � � yKt), select a discrete set of points
Dk�Nk = {ȳkn}Nkn=1.

Step 2. For j = 1� � � � � J, perform the following steps:

(a) For k = 1� � � � �K (note that we can treat each component k separately be-
cause the variance–covariance matrixD is diagonal),

8Clearly there are infinitely many such decompositions. Experience tells us that the quality of dis-
cretization is best when each component of the yt process in (3.2) has the same unconditional variance.
We can construct such a decomposition as follows. First, take C̃ such that Ψ = C̃C̃ ′, so D = I. Define
ỹt = C̃−1(xt − μ), Ã= C̃−1BC̃, and ε̃t = C̃−1ηt ∼N(0� I). Let Σ̃ be the unconditional variance of the ỹ pro-
cess. Let yt = U ′ỹt for some orthogonal matrix U , and define A = U ′ÃU , εt = U ′ε̃t , and C = C̃U ′. Then
Var[εt ] =U ′IU = I. The unconditional variance of the y process is then Σ=U ′Σ̃U . Since trΣ= tr Σ̃, the di-
agonal elements ofΣ become equal ifΣkk = (U ′Σ̃U)kk = 1

K tr Σ̃. We can make this equation (approximately)
true by solving the optimization problem

minimize
K∑
k=1

((
U ′Σ̃U

)
kk

− 1
K

tr Σ̃
)2

subject to U ′U = I�

With this choice of U , the unconditional variances of the components of {yt} are close to each other, and in
fact are equal if the objective function takes the value zero.

9In practice, we takeN1 =N2 = · · · =NK =N , so J =NK .
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(i) Define the moment defining function and exact moments by

Tkj(x)=
[

x(
x−μk(j)

)2

]
and T̄kj =

[
μk(j)

σk(j)
2

]
�

(ii) Select an initial approximation {qkn(j)}Nkn=1, where qkn(j) is the probability of
moving to point ȳkn conditional on being in state j.

(iii) Solve minimization problem (D′
n) for λkj and compute the conditional prob-

abilities {pkn(j)}Nkn=1 using (2.3).

(b) Compute the conditional probabilities {pjj′ }Jj′=1 by multiplying together the
conditional probabilities pkn(j) that make up transitions to elements of state j′.

Step 3. Collect the conditional probabilities {pjj′ }Jj′=1 into a matrix P = (pjj′).

To determine {pkn(j)} using Algorithm 3.1, we need an initial coarse approximation
{qkn(j)}. The simplest way is to take the grid points {ȳkn}Nkn=1 to be evenly spaced and as-
sign qkn(j) to be proportional to the conditional density of ykt given state j, which corre-
sponds to choosing the trapezoidal rule for the initial quadrature formula. Alternatively,
we can use the nodes and weights of the Gauss–Hermite quadrature as in Tauchen and
Hussey (1991)10 or take the grid points {ȳkn}Nkn=1 as quantiles of the unconditional distri-
bution and assign probabilities according to the cumulative distribution function, as in
Adda and Cooper (2003).11 Which grid/quadrature formula is best is a practical problem
and we explore this issue in subsequent sections.

This method can be generalized to VAR(p) processes, although the dimension of
the state space would grow exponentially in p unless we use a sparse grid.

3.1.2 Theoretical properties of the discretization If a solution to the dual problem (D′
n)

exists, by construction our method generates a finite-state Markov chain approximation
of the VAR with exact one-step ahead conditional moments. But how about k-step ahead
conditional moments and unconditional moments? The following theorem provides an
answer.

Theorem 3.2. Consider the VAR(1) process in (3.2), with gridDN . Suppose that the reg-
ularity condition T̄n ∈ int coT(DN) holds, and hence our method matches the conditional

10Following the original paper by Tauchen and Hussey (1991), we always use the conditional variance
matrixD to construct the Gauss–Hermite quadrature. This is the most logical way since dynamic economic
models involve conditional expectations (e.g., Euler equations), which are integrals that use the conditional
distributions.

11The specific procedure is as follows. Let the stationary distribution of ykt beN(0�σ2
k). Since there areNk

discrete points for ykt , we divide the real line R intoNk intervals using the nthNk quantile (n= 1� � � � �Nk −
1), which we denote by Ik1� � � � � IkN . The discrete points are then the median of each interval, so ȳkn =
F−1((2n − 1)/2Nk) (n = 1�2� � � � �Nk), where F is the CDF of N(0�σ2

k). When the t − 1 state is j, since the
conditional distribution of ykt is N(μk(j)�σ2

k(j)), we assign initial probability qkn(j) = P(Ikn) to the point
ȳkn under the conditional distributionN(μk(j)�σ2

k(j)).
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mean and variance. Then the method also matches any k-step ahead conditional mean
and variance, as well as the unconditional mean and all autocovariances (hence spec-
trum).

This result holds even for a certain class of stochastic volatility models (Theorem
A.1). According to its proof, there is nothing specific to the choice of the grid, the nor-
mality of the process, or the diagonalization. Therefore the result holds for any non-
Gaussian linear process.

So far, we have assumed that the regularity condition (2.7) holds, so that a discrete
approximation with exact conditional moments using our method exists. As we see in
the numerical examples below, such a discretization exists most of the time, but not
always. Therefore it is important to provide easily verifiable conditions that guarantee
existence. For general VARs, the following proposition shows that it is always possible to
match conditional means.

Proposition 3.3. Consider the VAR(1) process in (3.2) with coefficient matrix A =
(akk′). Let |A| = (|akk′ |) be the matrix obtained by taking the absolute value of each el-
ement of A. If the spectral radius of |A| is less than 1 (i.e., all eigenvalues are less than 1
in absolute value), then there exists a tensor grid such that we can match all conditional
means.

How about the conditional mean and variance? Since addressing this issue for gen-
eral VAR processes is challenging, we restrict our analysis to the case of an AR(1) pro-
cess. The following proposition shows that a solution exists if the grid is symmetric, suf-
ficiently fine, and the grid points span more than one unconditional standard deviation
around 0.

Proposition 3.4. Consider the AR(1) process

xt = ρxt−1 + εt� εt ∼ (0�1)�

where 0 ≤ ρ < 1. Suppose that (i) the grid {x̄n}Nn=1 is symmetric and spans more than one

unconditional standard deviation around 0, so maxn|x̄n|> 1/
√

1 − ρ2, and (ii) either the
maximum distance between two neighboring grid points is less than 2 or for each positive
grid point x̄n > 0, there exists a grid point x̄n′ such that

ρx̄n − 1
(1 − ρ)x̄n < x̄n′ ≤ ρx̄n� (3.3)

Then (D′
n) has a unique solution for all n.

When the grid {x̄n} is evenly spaced, we can obtain a simple sufficient condition for
existence.

Corollary 3.5. Let the grid points {x̄n}Nn=1 be symmetric and evenly spaced, let σ =
1/

√
1 − ρ2 be the unconditional standard deviation, and let M = maxn x̄n. Suppose one

of the following alternatives hold:
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(i) We have ρ≤ 1 − 2
N−1 and σ <M ≤ √

2σ
√
N − 1.

(ii) We have ρ > 1 − 2
N−1 and σ <M ≤ σ√

N − 1.

Then (D′
n) has a unique solution for all n.

Interestingly, Kopecky and Suen (2010) show that the Rouwenhorst (1995) method
matches the first and second conditional moments when the grid span isM = σ√

N − 1,
the upper bound in Corollary 3.5 for the case ρ > 1 − 2

N−1 . Choosing a grid span of

order
√
N can also be theoretically justified. In that case, the grid spacing is of order

N/
√
N = 1/

√
N . Since the grid gets finer while the grid span tends to infinity, the trape-

zoidal formula converges to the true integral. Therefore the approximation error can be
made arbitrarily small by increasing N . For general VARs, we do not have theoretical re-
sults for the existence of a discretization that matches second moments. However, we
recommend using a grid span M = σ

√
N − 1 in each dimension, where σ is the square

root of the smallest eigenvalue of the unconditional variance of the VAR.
Theorem 3.2, Proposition 3.4, and Corollary 3.5 are significant. Note that among all

existing methods, the Rouwenhorst (1995) method for discretizing Gaussian AR(1) pro-
cesses is the only one known to match the first and second conditional moments ex-
actly.12

3.2 AR(1)with stochastic volatility

Consider an AR(1) process with stochastic volatility of the form

yt = λyt−1 + ut� ut ∼N
(
0�ext

)
� (3.4a)

xt = (1 − ρ)μ+ ρxt−1 + εt� εt ∼N
(
0�σ2)� (3.4b)

where xt is the unobserved log variance process and yt is the observable, for example,
stock returns. We assume that yt is mean zero without loss of generality.

Since the log variance process xt evolves independently of the level yt as an AR(1)
process, we can discretize it using Algorithm 3.1. For yt , note that the unconditional vari-
ance is given by

σ2
y = E

[
y2
t

] = E
[
ext

]
1 − λ2 �

Since the unconditional distribution of xt isN(μ� σ2

1−ρ2 ), we have

E
[
ext

] = exp
(
μ+ σ2

2
(
1 − ρ2)

)
using the properties of log normal random variables. We can then construct an evenly
spaced grid for yt spanning some number of unconditional standard deviations
around 0.

12Kopecky and Suen (2010) prove that the one-step ahead conditional moments are exact. By Theo-
rem 3.2, all k-step ahead conditional moments are also exact.
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With some more algebra, we can show that

yt |xt−1� yt−1 ∼N(
λyt−1�exp

(
(1 − ρ)μ+ ρxt−1 + σ2/2

))
�

We discretize these conditional distributions for each (xt−1� yt−1) pair using our method
and combine them with the discretization obtained for xt |xt−1 above, to come up with a
joint transition matrix for the state (xt� yt).

3.3 Relation to the existing literature

In this section we discuss the existing literature in detail.
The standard method for approximating an AR(1) process is that of Tauchen (1986),

which divides the state space into evenly spaced intervals, with the grid chosen as the
midpoints of those intervals. Tauchen constructs each approximate conditional distri-
bution by matching the probabilities of transitioning from a particular point to each
interval. The Tauchen method is intuitive, simple, and reasonably accurate when the
number of grid points is large enough. It is easily generalized and widely used for the
approximation of VAR processes. Variants of the Tauchen method have been developed
in the literature by using Gauss–Hermite quadrature (Tauchen and Hussey, 1991), plac-
ing grid points using quantiles instead of evenly spaced intervals (Adda and Cooper,
2003), and using multivariate normal integration techniques (Terry and Knotek, 2011).
Rouwenhorst (1995) proposes an alternative discretization method of a Gaussian AR(1)
process that matches the unconditional first and second moments exactly. His idea is to
approximate a normal distribution by binomial distributions.

VARs are highly persistent in typical macroeconomic applications. It has been recog-
nized that the Tauchen and Tauchen–Hussey methods often fail to give accurate approx-
imations to such processes (Zhang, 2005, Flodén, 2008),13 which has spurred a renewed
research interest in accurately discretizing autoregressive processes. Kopecky and Suen
(2010) prove that for a certain choice of the grid, the Rouwenhorst method actually
matches the autocorrelation and the conditional mean and variance. This means that
the Rouwenhorst method is suitable for discretizing highly persistent Gaussian AR(1)
processes, for which earlier methods failed. Applying it to typical macroeconomic mod-
els such as stochastic growth and income fluctuation models, they show that the relative
error in the solution accuracy is less than 1% with the Rouwenhorst method, compared
with 10–20% with earlier methods.

Galindev and Lkhagvasuren (2010) generalize the Rouwenhorst method to the mul-
tivariate case by transforming a VAR into a set of cross-correlated AR(1) processes. How-
ever, their method works only when the AR(1) processes are equally persistent (a knife-
edge case), for otherwise the state space is not finite.

Gospodinov and Lkhagvasuren (2014) propose an alternative discretization method
of VARs by first discretizing independent AR(1) processes using the Rouwenhorst
method and then targeting the first and second conditional moments to mimic the con-
ditional distributions of the actual VAR process. Solving a stochastic growth model with

13In the original paper, Tauchen (1986) himself admits that “[e]xperimentation showed that the quality
of the approximation remains good except when λ [the persistence parameter] is very close to unity.”
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a highly persistent bivariate VAR, they find that the relative error in the solution accuracy
is about 1–3% with their method, compared with 10–30% with the Tauchen method.

Since our method matches conditional moments, it is similar in spirit to
Rouwenhorst (1995) (AR(1)) and Gospodinov and Lkhagvasuren (2014) (VAR(1)),
though our method is not limited to VARs. Here we contrast our method to these two
in more details. According to Proposition 3 in Kopecky and Suen (2010), the ergodic dis-
tribution of the resulting Markov chain of the Rouwenhorst method is a standardized
binomial distribution with parameter N − 1 and s = 1/2, so by the central limit theo-
rem it converges to N(0�1) as N → ∞. This argument suggests that the Rouwenhorst
method is designed to discretize a Gaussian AR(1). It immediately follows that neither
our method (for AR(1)) nor the Rouwenhorst method is a special case of the other: our
method is not limited to Gaussian AR(1) processes (Proposition 3.4 and Corollary 3.5
do not assume normality) and generally has a different grid.

With regard to VARs, both the Gospodinov and Lkhagvasuren (2014) (GL) method
and ours target the first and second conditional moments. The GL method uses the
Rouwenhorst method to obtain a preliminary discretization and then targets the mo-
ments. As GL acknowledge in their paper, the GL method has fewer free variables than
the number of targeted moments, and hence it is generally impossible to match all mo-
ments. While we do not have a proof that our method matches all first and second condi-
tional moments (Proposition 3.3 shows that it is possible to match conditional means),
according to our experience it seems that for most applications we can indeed match all
first two conditional moments when we use the evenly spaced grid. Again neither of the
two methods is a special case of the other.

We do not claim that our method is always preferable, although we emphasize that
our method is not limited to the discretization of linear Gaussian processes. Whether
our method is superior or not can only be answered by studying the accuracy in specific
problems. The Appendix compares the accuracy of discretization and shows that our
method outperforms existing ones by several orders of magnitude. However, discretiza-
tion is not an end in itself. More important questions are whether different discretization
methods lead to substantial differences in the solution accuracy of dynamic economic
models and whether these differences matter economically. We provide answers to these
questions in the next sections.

4. Solution accuracy of asset pricing models

Whenever one proposes a new numerical method for solving dynamic models, it must
be evaluated by two criteria: (i) Does the new method improve the solution accuracy of
well known, standard dynamic economic models? (ii) Can the new method be applied
to solve more complicated models for which existing methods are not readily available?
For a new method to be useful, it must meet at least one (preferably both) of these two
criteria.

This section addresses these questions by solving simple asset pricing models with
or without Gaussian shocks. We use the closed-form solutions obtained by Burnside
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(1998) for Gaussian shocks and Tsionas (2003) for non-Gaussian shocks as comparison
benchmarks.14

4.1 Model and numerical solution

Consider a representative agent with additive coefficient of relative risk aversion (CRRA)
utility function

E0

∞∑
t=0

βt
C

1−γ
t

1 − γ �

where Ct is consumption, β > 0 is the discount factor, and γ > 0 is the coefficient of
relative risk aversion. The agent is endowed with aggregate consumption {Ct}∞t=0, and
can trade assets in zero net supply. Let Dt be the dividend to an asset and let Pt be its
price. When log consumption and dividend growth

xt =
(
log(Ct/Ct−1)� log(Dt/Dt−1)

)
follow a VAR(1) process with independent and identically distributed (i.i.d.) shocks, it is
possible to obtain a closed-form solution for the price–dividend ratio Vt = Pt/Dt , which
depends only on xt . See the Appendix, available in a supplementary file on the journal
website, http://qeconomics.org/supp/737/supplement.pdf, for details.

We obtain numerical solutions as follows. By the Euler equation, we have

Pt = Et
[
β(Ct+1/Ct)

−γ(Pt+1 +Dt+1)
]
� (4.1)

Dividing (4.1) byDt , we obtain

Vt = βEt
[
exp

(
α′xt+1

)
(Vt+1 + 1)

]
� (4.2)

where α = (−γ�1)′. Suppose that the process for consumption and dividend growth
is discretized. Let s = 1� � � � � S be the states, let xs be the vector of log consump-
tion/dividend growth in state s, and let P = (πss′) be the transition probability matrix.
Then the discrete analog of (4.2) is

vs = β
S∑
s′=1

πss′e
α′xs′ (vs′ + 1)� (4.3)

where vs is the price–dividend ratio in state s. Let v = (v1� � � � � vS)
′ (S × 1) and X =

(x′
1� � � � � x

′
S)

′ (S× 2) be the matrices of those values. Then (4.3) is equivalent to the linear
equation

v= βP diag
(
eXα

)
(v+ 1) ⇐⇒ v= (

I −βP diag
(
eXα

))−1
βPeXα� (4.4)

14Collard and Juillard (2001) and Schmitt-Grohé and Uribe (2004) also use this model to evaluate the
solution accuracy of the perturbation method.

http://qeconomics.org/supp/737/supplement.pdf
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This formula gives the price–dividend ratio only at the grid points, and one might be
interested in computing the value at any point. In this case, we can use the projection
method (Judd, 1992). The idea of the projection method with Chebyshev collocation is
to approximate the unknown policy function using Chebyshev polynomials as a basis.15

Suppose we approximate V (x) as

V̂ (x;b)=
S∑
s=1

bsΨs(x)�

where {Ψs}Ss=1 is a set of basis functions (Chebyshev polynomials) and b= {bs}Ss=1 is the
vector of coefficients to be determined. We can solve for b that sets the Euler equation
(4.2) to exactly zero at each of the S grid points implied by each discretization method,
which leads to an exactly identified system. The equation becomes

V̂ (xs;b)= β
S∑
s′=1

πss′e
α′xs′

(
V̂ (xs′ ;b)+ 1

)
� (4.5)

However, if we set vs = V̂ (xs;b), then (4.5) becomes identical to (4.3). Therefore find-
ing coefficients {bs} that solve (4.5) is equivalent to first solving the linear equation (4.3)
(whose solution is given by (4.4)) and then finding an interpolating polynomial. We sum-
marize the above discussion in the following proposition.

Proposition 4.1. Solving an asset pricing model with a continuous state space using
discretization and projection is equivalent to solving a model with a discrete state space,
which can be done by inverting a matrix as in (4.4). The continuous solution can be ob-
tained by interpolating the discrete solution.

Proposition 4.1 is quite powerful. Note that there is nothing specific to the prefer-
ences of the agent or the underlying stochastic process needed to apply the proposition.
For example, suppose that the agent has a general recursive utility of the form

Ut = f
(
Ct�Mt(Ut+1)

)
� (4.6)

where Ut is the utility at time t, Ct is consumption, f is the aggregator, and Mt is the
certainty equivalent of the continuation utilityUt+1.16 Suppose that f and M are homo-
geneous of degree 1 (which is true for almost all applications) and that the underlying

15Unlike standard Chebyshev collocation, we are constrained to solve for coefficients that set the Euler
equation residuals equal to 0 at the discretization points rather than the zeroes of the Chebyshev polyno-
mial. This in general means we are only guaranteed pointwise convergence of our approximation rather
than uniform convergence.

16A typical example is f (c� v)= ((1 − β)c1−1/ψ + βv1−1/ψ)
1

1−1/ψ (constant elasticity of substitution (CES)

aggregator with elasticity of intertemporal substitution ψ) and Mt (X)= Et [X1−γ] 1
1−γ (certainty equivalent

with relative risk aversion γ) in which case we obtain the Epstein–Zin preference.
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stochastic process is discretized. Dividing (4.6) by Ct , we can solve for the S nonlinear
equations in S unknowns,

us = f (1�Ms
(
exss′us′

))
� (4.7)

where xss′ is log consumption growth from state s to s′ and us = (Ut/Ct)(s) is the utility–
consumption ratio in state s. After solving for these values {us}, one can compute the
pricing kernel and price any assets by inverting a matrix as in (4.4). In practice, solving
(4.7) and inverting a matrix to compute asset prices take only a fraction of a second to
carry out.17

4.2 Calibration

We calibrate the model at annual frequency. We select the preference parameters β =
0�95 and γ = 2, which are relatively standard in the macro literature. We consider three
specifications for the law of motion of xt : Gaussian AR(1), Gaussian VAR(1), and AR(1)
with non-Gaussian shocks. We estimate the parameters of each of these models using
data on real personal consumption expenditures per capita of nondurables from the
Federal Reserve Economic Data (FRED), and 12-month moving sums of dividends paid
on the Standard and Poors (S&P) 500 obtained from the spreadsheet in Welch and Goyal
(2008).18 For the two univariate specifications, we assume that Ct = Dt , that is, x1�t =
x2�t = xt , and use the data on dividends to estimate the parameters.

The reason why we use dividend data instead of consumption data for the univariate
models is as follows. Given the mean μ and persistence ρ of the AR(1) process, accord-
ing to Tsionas (2003) the price–dividend ratio depends only on the moment generating
function (MGF) M(s) of the shock distribution in the range 1−γ

1−ρ ≤ s ≤ 1 − γ (assuming
γ > 1 and ρ > 0). But if two shock distributions have identical mean and variance, then
the Taylor expansion of their MGF around s = 0 will coincide up to the second-order
term. Therefore, to make a difference for asset pricing, we need to either (i) move away
from s = 0 by increasing γ, (ii) make the domain of the MGF larger by increasing ρ, or
(iii) make the MGF more nonlinear by increasing the variance or skewness. Since divi-
dend growth is more persistent, volatile, and skewed than consumption growth, using
dividend growth will make the contrasts between methods more stark.

4.3 Solution accuracy

After computing the numerical and closed-form solutions as described in the Appendix,
we evaluate the accuracy by the log10 relative errors

log10

∣∣∣V̂ (x)/V (x)− 1
∣∣∣�

17The idea of using discretization to solve asset pricing models is not particularly new: see, for example,
Mehra and Prescott (1985), Cecchetti, Lam, and Mark (1993), and Bonomo et al. (2011), among others. The
point is that there have been no systematic ways to accurately discretize the underlying stochastic process
in the literature to make discretization a viable option.

18http://www.hec.unil.ch/agoyal/.

http://www.hec.unil.ch/agoyal/
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where V (x) is the true price–dividend ratio at x and V̂ (x) is the approximate (numer-
ical) solution corresponding to each method obtained by the interpolating polynomial
as in Proposition 4.1. To compare the relative errors of each method, we first take the
largest common support across all discretization methods so that the approximation is
well defined, and then compute the relative errors on a fine grid (say 1001 points in each
dimension) on this support. All methods beginning with “ME” refer to the maximum en-
tropy method developed in this paper with different choices of the underlying grid and
quadrature formula. For example, “ME-Even” refers to the maximum entropy method
using an evenly spaced grid.

4.3.1 Gausian AR(1) Modeling the dynamics of dividend growth by a Gaussian AR(1)
is straightforward and we relegate the details to the Appendix.

4.3.2 Gaussian VAR(1) We next consider specifying the joint dynamics of dividend
growth and consumption growth as a Gaussian VAR(1),

xt = (I −B)μ+Bxt−1 +ηt� ηt ∼N(0�Ψ)�
whereμ is a 2×1 vector of unconditional means, B is a 2×2 matrix with eigenvalues less
than 1 in absolute value,η is a 2×1 vector of shocks, andΨ is a 2×2 variance–covariance
matrix. The estimated parameters of the VAR(1)model are

μ=
[

0�0128
0�0561

]
� B=

[
0�3237 −0�0537
0�2862 0�3886

]
� Ψ =

[
0�000203 0�000293
0�000293 0�003558

]
�

The eigenvalues of B are 0�3561 ± 0�1196i, with spectral radius ρ(B)= 0�3757, so the VAR
is moderately persistent.

We consider eight different discretization methods. For our method, we consider
the evenly spaced grid with two or four moments (ME-Even (2,4)), the quantile grid
(ME-Quant), and the Gauss–Hermite quadrature grid (ME-Quad). For existing meth-
ods, we consider those of Tauchen (1986) (Tau), Tauchen and Hussey (1991) (TH), and
Gospodinov and Lkhagvasuren (2014) with (GL) and without (GL0) moment matching.
Figure 1 shows the graphs of log10 relative errors for the VAR(1) model. Table 1 shows
the mean and maximum log10 relative errors over the entire grid.

For all choices of N , the Gaussian quadrature based methods, ME-Quad and TH,
perform the best, with ME-Quad being always about 2 orders of magnitude more accu-
rate than TH. For evenly spaced methods, the order of accuracy is always ME-Even (4)>
ME-Even (2)> GL0, GL> Tauchen, and ME-Even (4) is as accurate as Tauchen–Hussey.
ME-Quant is not particularly accurate but its performance is similar to the GL methods.
According to Table 1, the conclusions drawn from Figure 1 are robust.

4.3.3 AR(1) with non-Gaussian shocks Researchers often assume normality of the
conditional shock distributions for analytical and computational convenience. How-
ever, there is much evidence of nonnormality in financial data. One might prefer to spec-
ify a parametric distribution with fatter tails or to refrain from parametric specifications
altogether. For this reason, we consider an AR(1) with i.i.d., but non-Gaussian shocks:

xt = (1 − ρ)μ+ ρxt−1 + εt� εt ∼ F�
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Figure 1. The log10 relative errors of the price–dividend ratio with various discretization meth-
ods and number of points for the VAR(1) model. Each row corresponds to a certain number of
grid points (N = 5�7�9). The left panels show the accuracy along the dividend growth dimen-
sion, fixing consumption growth at its unconditional mean. The right panels fix dividend growth
at its unconditional mean and vary consumption growth. The grids are demeaned so that the
unconditional mean corresponds to 0 in the figures.
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Table 1. Mean and maximum log10 relative errors for the asset pricing model with VAR(1) con-
sumption/dividend growth.

ME Methods Existing Methods

N Even (2) Quant Quad Even (4) Tau TH GL0 GL

Mean log10 errors
5 −3�381 −2�963 −5�028 −3�570 −1�463 −2�964 −3�439 −2�191
7 −3�667 −3�066 −6�758 −5�134 −1�520 −4�920 −2�586 −2�618
9 −3�949 −3�146 −8�563 −6�739 −1�546 −6�900 −2�449 −3�106

Maximum log10 errors
5 −3�292 −2�865 −4�97̂5 −3�485 −1�327 −2�890 −2�365 −1�982
7 −3�566 −2�954 −6�717 −4�891 −1�360 −4�838 −2�125 −2�140
9 −3�838 −3�022 −8�451 −5�730 −1�370 −6�581 −2�212 −2�471

Table 2. Parameters of the AR(1) process with Gaussian mixture shocks.

Parameter Symbol Value

Mean dividend growth μ 0�0559
Persistence of dividend growth ρ 0�4049
Volatility of dividend growth σ 0�0589
Proportion of mixture components wj 0�0304�0�8489�0�1207
Mean of mixture components μj −0�2282�−0�0027�0�0766
S.D. of mixture components σj 0�0513�0�0316�0�0454

Note: This table shows the parameter estimates of the AR(1) process with Gaussian mixture shocks xt = (1 −ρ)μ+ρxt−1 +
εt , where xt = log(Dt/Dt−1) is log dividend growth and εt ∼ N(μj�σ

2
j ) with probability wj , j = 1� � � � � J. Growths μ and ρ are

estimated by ordinary leastsquares (OLS); σ = √
Var[εt ] is computed from the squared sum of residuals. The Gaussian mix-

ture parameters are estimated by maximum likelihood from the residuals, and the number of components J = 3 is chosen to
minimize the Akaike information criterion (AIC).

We model the shock distribution F by a Gaussian mixture because it is flexible yet ana-
lytically tractable (all moments and moment generating function have closed-form ex-
pressions). Table 2 shows the parameter estimates.

Figure 2 plots the probability density functions (PDFs) of εt fitted to the dividend
growth data under the assumptions of normal and Gaussian mixture shocks, as well as
the nonparametric kernel density estimate. The Gaussian mixture with three compo-
nents appears to capture the skewness and kurtosis lacking in the normal specification
by placing more weight on large negative realizations of the shock as well as ones close
to zero.

We consider six different discretizations for the log dividend growth process. The first
two are the Rouwenhorst (1995) and the Tauchen and Hussey (1991) methods, which
can be thought of as a case where the researcher incorrectly believes the conditional
density to be Gaussian. The other four methods are the ME methods with evenly spaced
(ME-Even) or Gauss–Hermite quadrature grid (ME-GH), each with two or four moments
matched. For ME-Even, we implement the discretization exactly as in Algorithm 3.1, ex-
cept that we use the Gaussian mixture density instead of the normal density. We choose
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Figure 2. Densities fitted to the AR(1) OLS residuals.

the grid spacing as the upper bound in Corollary 3.5. For ME-GH, we take the following
approach. Suppose the true (Gaussian mixture) density at a given grid point is f (x). Let
φ(x) be the normal density with mean 0 and the same standard deviation as f (x). Then
the expectation of a function g(x) is

∫
g(x)f (x)dx=

∫
g(x)

f (x)

φ(x)
φ(x)dx≈

N∑
n=1

wn
f(xn)

φ(xn)
g(xn)�

where {xn} and {wn} are nodes and weights for the Gauss–Hermite quadrature corre-
sponding to φ(x). This argument suggests that we can use the Gauss–Hermite quadra-
ture grid with weights w′

n = wn
f(xn)
φ(xn)

to discretize f (x). Figure 3 plots the log10 relative
errors of the AR(1) model with Gaussian mixture shocks. Table 3 shows the mean and
maximum log10 relative errors.

As we can see from the figure and the table, the order of accuracy is always ME-GH ≈
ME-Even > Rouwenhorst ≈ Tauchen–Hussey, and matching four moments instead of
two increases the solution accuracy by about 1–2 orders of magnitude. For low risk aver-
sion (γ = 2), even the misspecified models (Rouwenhorst and Tauchen–Hussey) have
relative errors less than 10−2 or 1%, so the choice of the discretization method does not
matter so much. However, with higher risk aversion (γ = 5), the misspecified models
are off by more than 10−1 (10%), while ME methods with four moments have errors less
than 10−2 (1%) with 9 points and 10−3 (0�1%) with 15 points. Hence the choice of the dis-
cretization method makes an economically significant difference when risk aversion is
moderately high, which is often the case for many asset pricing models in the literature.

5. Solution accuracy of a rare disasters model

To illustrate the general applicability of our method, in this section we solve an asset
pricing model with variable rare disasters (Gabaix, 2012). There are several good rea-
sons to consider this model. First, the dynamics of the underlying stochastic process are
nonlinear and non-Gaussian, which makes our method more useful. Second, Gabaix’s
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Figure 3. The log10 relative errors with various discretization methods and number of points for
the Gaussian mixture model. The top panels show the accuracy for approximations to the bench-
mark model with risk aversion γ = 2 and different number of grid points N = 9�15. The bottom
panels show the results for an alternative specification in which the risk aversion is higher at
γ = 5.

model admits closed-form solutions, which makes the accuracy comparison particu-
larly simple. Finally, since rare disaster models have recently become quite popular in
the literature (Rietz, 1988, Barro, 2006, Gourio, 2012, Wachter, 2013), providing a simple
yet accurate solution algorithm seems to be useful, especially for the purpose of calibra-
tion and estimation.

5.1 Model

Gabaix (2012) considers a representative-agent asset pricing model in an endowment
economy. The representative agent has CRRA preferences

E0

∞∑
t=0

e−ρt C
1−γ
t

1 − γ �
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Table 3. Mean and maximum log10 relative errors for the AR(1) asset pricing model with Gaus-
sian mixture shocks.

ME Methods Existing Methods

N γ Even (2) Even (4) GH (2) GH (4) R TH

Mean log10 errors
9 2 −3�381 −5�013 −3�602 −5�176 −2�602 −2�606

15 2 −4�264 −6�445 −5�189 −6�414 −2�604 −2�606
9 5 −1�466 −2�071 −1�602 −2�182 −0�909 −0�919

15 5 −2�137 −2�948 −2�774 −3�467 −0�913 −0�919

Maximum log10 errors
9 2 −3�239 −4�698 −3�406 −4�978 −2�587 −2�603

15 2 −3�935 −5�821 −4�748 −5�673 −2�591 −2�602
9 5 −1�307 −1�913 −1�413 −2�018 −0�874 −0�900

15 5 −1�854 −2�639 −2�464 −3�184 −0�875 −0�892

Note: Even (L) denotes an evenly spaced grid with L moments; GH (L) denotes a Gauss–Hermite quadrature grid with L
moments; R denotes the Rouwenhorst (1995) method; TH denotes the Tauchen and Hussey (1991) method.

where ρ > 0 is the discount rate and γ > 0 is relative risk aversion. Disasters occur with
probability pt at time t + 1. The consumption growth is given by

Ct+1

Ct
= egC ×

{
1� no disaster�

Bt+1� disaster�

where gC is the growth rate in normal times and Bt+1 ∈ (0�1] is the consumption recov-
ery rate after a disaster. Similarly, the dividend growth is

Dt+1

Dt
= egD ×

{
1� no disaster�

Ft+1� disaster�

where gD is the growth rate in normal times and Ft+1 ∈ (0�1] is the dividend recovery
rate after a disaster. Gabaix (2012) defines the quantity, which he calls resilience,

Ht = pt ED
t

[
B

−γ
t+1Ft+1 − 1

]
� (5.1)

where ED
t denotes the expectation conditional on disaster. Instead of specifying the dy-

namics of the fundamentals pt , Bt , and Ft individually, Gabaix directly specifies the dy-
namics ofHt =H∗ + Ĥt as

Ĥt+1 = 1 +H∗
1 +Ht e−φHĤt + εHt+1� (5.2)

where H∗ is a constant, φH > 0 is the speed of mean reversion at Ht =H∗, and εHt+1 is
an innovation. Since 1 +Ht appears in the denominator of the right-hand side, (5.2) is
a highly nonlinear process. It turns out that the price–dividend ratio at time t depends
only on Ĥt independent of the distribution of εHt+1, and Gabaix obtains a closed-form
solution (see equation (13) in his paper).
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Figure 4. Ergodic distribution of the variable part of resilience Ĥ.

5.2 Solution accuracy

To compare numerical solutions obtained by our method to the exact solution, we need
to discretize the process (5.2). Since the distribution of the innovation εHt+1 does not mat-
ter and since Gabaix shows that the process {Ĥt} must be bounded, we assume that the
distribution of Ĥt+1 given Ĥt is a beta distribution (properly rescaled) with mean and
variance implied by (5.2). Once we specify the conditional distribution in this way, it is
straightforward to discretize the Markov process using our method. See the Appendix for
the details on discretization and the computation of the numerical solution. Although
there are no accepted standard ways to solve the rare disasters model, we also compare
the solution accuracy of our method to the perturbation method proposed in Levintal
(2014).19

For the parameter values, following Gabaix (2012) we set the discount rate ρ =
0�0657, relative risk aversion γ = 4, consumption and dividend growth rate gC = gD =
0�025, disaster probability p = 0�0363, consumption recovery rate B = 0�66, and the
speed of mean reversionφH = 0�13. The implied value for the constantH∗ in (5.2) is 0�09.
Figure 4 shows the ergodic distribution of the variable part of resilience Ĥ computed
from the discrete approximation withN = 201 points. The distribution is bimodal.

For our method, we consider the evenly spaced grid, Gauss–Legendre quadrature
grid, and the Clenshaw–Curtis quadrature grid, which are the most natural choices since
the integration is over a bounded interval. The number of points is N = 5�11�21�41�81.
For the perturbation method in Levintal (2014), we consider up to the fifth-order ap-
proximation (the maximum allowed). So as to apply the perturbation method, we need
to supply the unconditional standard deviation of the innovation in resilience, εHt+1. We
compute this number using the ergodic distribution in Figure 4, which is 0�0174. We also
simulated the true process (5.2) for a long time and verified that we obtain the same
number up to four decimal places. Figure 5 shows the log10 relative errors of the price–
dividend ratio. Table 4 shows the mean and maximum log10 relative errors over the entire
grid.

19https://sites.google.com/site/orenlevintal/5th-order-perturbation.

https://sites.google.com/site/orenlevintal/5th-order-perturbation
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Figure 5. The log10 relative errors of the price–dividend ratio with various methods and number
of points or order of approximation for the variable rare disaster model.

Table 4. Mean and maximum log10 relative errors for the variable disaster model.

ME Methods Perturbation

Even Gauss–Legendre Clenshaw–Curtis Order

Mean log10 errors
5 −1�187 −1�982 −1�218 1 −0�422

11 −2�582 −3�451 −2�676 2 −0�856
21 −5�383 −5�560 −5�354 3 −1�007
41 −8�007 −9�679 −9�040 4 −1�268
81 −9�228 −11�23 −9�873 5 −1�590

Maximum log10 errors
5 −0�107 −1�353 −0�182 1 −0�356

11 −0�365 −2�422 −0�841 2 −0�501
21 −0�628 −2�291 −1�430 3 −0�715
41 −1�053 −3�567 −1�447 4 −0�765
81 −1�503 −5�245 −2�003 5 −0�992
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Because the resilience process (5.2) is highly nonlinear, we need many grid points

to obtain an accurate solution. Overall using the Gauss–Legendre quadrature grid (Fig-

ure 5(b)) is the most accurate, with relative errors about 10−3 with N = 11 points, 10−5

withN = 21 points, and 10−10 withN = 41 points. Hence for practical purposes 11 points

are enough. Clenshaw–Curtis quadrature (Figure 5(c)) is similar to Gauss–Legendre,

as documented in Trefethen (2008). The performance of the evenly spaced grid (Fig-

ure 5(a)) is worse near the boundary points. This is because the conditional variance

of the resilience process (5.2) approaches zero near the boundary, which makes it hard

to match the conditional variance. Since there are many grid points near the boundary

for Gauss–Legendre and Clenshaw–Curtis, a low variance is not a problem. The pertur-

bation method (Figure 5(d)) is not so accurate, with about 10% error with third-order

approximation and 2�6% error with fifth-order. Even the 5-point Gauss–Legendre dis-

cretization is more accurate than the fifth-order perturbation in terms of both mean

and maximum log10 errors.

Do these differences in solution accuracy economically matter? To address this ques-

tion, we simulate the resilience process (5.2) for T = 100�000 periods and compute some

financial moments from the true solution as well as the numerical solutions. Table 5

shows the results. As expected from Figure 5 and Table 4, the 11-point Gauss–Legendre

discretization gives accurate results up to the third significant digit (0�1%). The pertur-

bation method does not fare well: with the first-order approximation, the stock return is

4 percentage points higher than the true value; the third-order approximation is off by

10–20%, and the fifth-order approximation is off by about 10% for the standard devia-

tion.

Based on the numerical results in the last two sections, we provide some recommen-

dations to allow the reader to make an informed decision on what kind of computational

strategy to adopt. The perturbation method is fast but it is inherently a local approx-

imation. When the model is highly nonlinear and shocks are large, the solution accu-

racy can be poor. Discretization is easy to implement and seems to be accurate enough

for most problems. For Gaussian VARs, our method (with evenly spaced or quadrature

grid) seems best. Numerical results in the Appendix suggest that for univariate Gaus-

sian AR(1) processes, ME-Quad is most accurate for persistence less than 0�8, ME-Even

is most accurate for persistence between 0�8 and 0�99, and the Rouwenhorst method is

best for persistence 0�99 and beyond (because the Rouwenhorst method is error-free,

i.e., it does not involve any numerical optimization). However, for persistence beyond

0�99, it may be better to use the projection method. Pohl, Schmedders, and Wilms (2015)

suggest that to solve the long run risk model (Bansal and Yaron, 2004), which features

very persistent processes, using the projection method makes an economically mean-

ingful difference in the solution accuracy. For nonlinear or non-Gaussian processes, as

in the rare disasters model, our discretization method would be the first choice since

there may not be any readily available quadrature formulas to use along with the pro-

jection method.
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Table 5. Financial moments.

ME Methods Perturbation

N Even Gauss–Legendre Clenshaw–Curtis Order

Mean P/D True = 16�7330
5 17�5101 16�9876 17�8134 1 9�9614

11 16�8498 16�7268 16�6894 2 13�6059
21 16�7523 16�7330 16�7329 3 14�2745
41 16�7351 16�7330 16�7330 4 15�6998
81 16�7331 16�7330 16�7330 5 16�3267

Standard deviation of log(P/D) True = 0�3366
5 0�2432 0�3467 0�2955 1 0�2640

11 0�3129 0�3371 0�3342 2 0�1859
21 0�3309 0�3366 0�3366 3 0�2718
41 0�3359 0�3366 0�3366 4 0�2717
81 0�3366 0�3366 0�3366 5 0�3020

Mean stock returns (%) True = 6�9574
5 6�2558 6�9003 6�3332 1 11�4419

11 6�7882 6�9627 6�9637 2 7�9205
21 6�9187 6�9575 6�9577 3 7�8651
41 6�9527 6�9574 6�9574 4 7�1212
81 6�9572 6�9574 6�9574 5 6�9676

Standard deviation of stock returns (%) True = 11�8058
5 10�2217 12�1749 11�3956 1 9�9833

11 11�5335 11�8175 11�7561 2 6�7575
21 11�7549 11�8062 11�8069 3 9�7367
41 11�8003 11�8058 11�8058 4 9�6381
81 11�8055 11�8058 11�8058 5 10�6445

Note: This table shows the financial moments from T = 100�000 simulations. “True” indicates the values from the exact
solution. The numbers are slightly different from Table III of Gabaix (2012) because (i) we simulate at the annual frequency,
while he simulates at the monthly frequency, and (ii) in Gabaix’s calibration, the stock resilience volatility is σH = 0�019 while
we have σH = 0�0174 because we specify beta distributions for the conditional dynamics.

6. Conclusion

In this paper, we provide a new method for discretizing a general class of stochastic
processes by matching low order conditional moments. Our method is computation-
ally tractable and allows researchers to approximate a wide variety of nonlinear non-
Gaussian Markov processes. We demonstrate that our method produces discrete ap-
proximations that are often several orders of magnitude more accurate than existing
methods for both linear and nonlinear stochastic processes. This is the case whether we
consider the relative bias of unconditional moments implied by the discretization or the
accuracy of solutions to asset pricing models.

Our maximum entropy procedure has a wide range of potential applications beyond
asset pricing models. It is common in the quantitative macro literature to use an AR(1)
specification for technology or income. We believe that researchers use AR(1) speci-
fications because existing methods do not easily allow for more realistic assumptions.
Recent work on the dynamics of the income distribution has shown that while income
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shocks have roughly constant variance, skewness and kurtosis display significant time
variation (Guvenen, Ozkan, and Song, 2014). Our method can be used to solve a life
cycle model with a realistic income process by matching the dynamics of these higher
order moments. Our method can also be used for estimating nonlinear, non-Gaussian
state space models (Farmer, 2016). In this paper we considered only tensor grids since
our applications involved only one or two state variables. An interesting and important
future research topic is to explore the performance of our method in conjunction with
sparse grids for solving dynamic models with many state variables.
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